skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carlsen, Ryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The transfer of a β-hydrogen from a metal-alkyl group to ethylene is a fundamental organometallic transformation. Previously proposed mechanisms for this transformation involve either a two-step β-hydrogen elimination and migratory insertion sequence with a metal hydride intermediate or a one-step concerted pathway. Here, we report density functional theory (DFT) quasiclassical direct dynamics trajectories that reveal new dynamical mechanisms for the β-hydrogen transfer of [Cp*Rh III (Et)(ethylene)] + . Despite the DFT energy landscape showing a two-step mechanism with a Rh–H intermediate, quasiclassical trajectories commencing from the β-hydrogen elimination transition state revealed complete dynamical skipping of this intermediate. The skipping occurred either extremely fast (typically <100 femtoseconds (fs)) through a dynamically ballistic mechanism or slower through a dynamically unrelaxed mechanism. Consistent with trajectories begun at the transition state, all trajectories initiated at the Rh–H intermediate show continuation along the reaction coordinate. All of these trajectory outcomes are consistent with the Rh–H intermediate <1 kcal mol −1 stabilized relative to the β-hydrogen elimination and migratory insertion transition states. For Co, which on the energy landscape is a one-step concerted mechanism, trajectories showed extremely fast traversing of the transition-state zone (<50 fs), and this concerted mechanism is dynamically different than the Rh ballistic mechanism. In contrast to Rh, for Ir, in addition to dynamically ballistic and unrelaxed mechanisms, trajectories also stopped at the Ir–H intermediate. This is consistent with an Ir–H intermediate that is stabilized by ∼3 kcal mol −1 relative to the β-hydrogen elimination and migratory insertion transition states. Overall, comparison of Rh to Co and Ir provides understanding of the relationship between the energy surface shape and resulting dynamical mechanisms of an organometallic transformation. 
    more » « less
  2. null (Ed.)
    Quasiclassical trajectory analysis is now a standard tool to analyze non-minimum energy pathway motion of organic reactions. However, due to the large amount of information associated with trajectories, quantitative analysis of the dynamic origin of reaction selectivity is complex. For the electrocyclic ring opening of cyclopropyl radical, more than 4000 trajectories were run showing that allyl radicals are formed through a mixture of disrotatory intrinsic reaction coordinate (IRC) motion as well as conrotatory non-IRC motion. Geometric, vibrational mode, and atomic velocity transition-state features from these trajectories were used for supervised machine learning analysis with classification algorithms. Accuracy >80% with a random forest model enabled quantitative and qualitative assessment of transition-state trajectory features controlling disrotatory IRC versus conrotatory non-IRC motion. This analysis revealed that there are two key vibrational modes where their directional combination provides prediction of IRC versus non-IRC motion. 
    more » « less
  3. null (Ed.)